

International Congress on Energy Efficiency and Energy Related Materials

Liberty Hotels Lykia, Oludeniz- Turkey

October 14-20 2020



## Microalgae culture for biodiesel production using agricultural residues as culture medium

## García-Moreno L. R.<sup>1</sup>, <u>Rodríguez-Palacio Mónica Cristina<sup>\*2</sup></u>, Guerra-Ramírez Diana<sup>1</sup>, Reyes-Trejo B<sup>1</sup> y Márquez-Berber S. R<sup>3</sup>.

<sup>1</sup>Natural Products Laboratory, Chemistry Area, Agricultural High School Department. Universidad Autónoma Chapingo, <sup>2</sup>. Applied Phycology Laboratory, Department of Hydrobiology. Universidad Autónoma Metropolitana, Unidad Iztapalapa. <sup>3</sup>Departament of Phytotechny. Universidad Autónoma Chapingo.

## \*Email: mony@xanum.uam.mx

**INTRODUCTION:** In rural areas, due to poor management of agricultural waste, high pollution problems are generated which cause eutrophication and contamination of aquifers. An alternative to this problem can be the bioremediation of these effluents using microalgae cultures. Microalgae are autotrophic microorganisms that occupy the first link in the food chain, and in recent years there has been an increase in research on their uses and applications due to the large amount of bioproducts and benefits we can obtain from them. Bioremediation work with microalgae can help improve the quality of effluents and generate a lipid-rich biomass for the production of biofuels. In this work we use cultures of the microalgae Scenedesmus dimorphus and Neochloris oleoabundans, to bioremediate effluents from the agricultural industry and we analyze the algal biomass to determine if it is optimal for the production of biofuels.



Material and Methods. Aqueous extracts were prepared from lamb,







rabbit and chicken manure (Figure1) and leached from the worm compost, these were irradiated with UV light for 48 hours. Microalgae strains were obtained from the Laboratory of Applied Phycology of UAM Iztapalapa and were scaled up to 16L biorectors (Figure 2). Cell growth was determined by counting in a Neubauer chamber, and pigment, protein, carbohydrate and lipid analyses were performed. Oil extraction was performed with a Soxhlet using hexane as a solvent, during 16 hours at reflux (Figure 3). For the alkaline transesterification, methanol was used together with potassium hydroxide as catalyst and oil in order to separate glycerin from triglycerides and obtain methyl esters. After this, caloric index tests were performed on a Parr Model 6400 calorimeter to determine its potential with respect to diesel. The profile of fatty acids was made by gas chromatography.

Results and Discussion: The microalgae grew well in the different types of organic leachates, achieving ammonia removal levels of up to 99% in the case of rabbit waste and 95% in the case of lamb waste. The algal biomass harvested from the bioremediation processes gave interesting results in terms of fatty acid composition, which indicates the potential for biodiesel production from it. In the European Union standard EN 14214, it is indicated that the fatty acids with the highest content should be those with long chains and a high degree of saturation such as: Palmitoleic, Oleic and Myristic. In Scenedesmus and Neochloris we can see a profile of optimal oils for the production of biodiesel. The predominant fatty acids are polyunsaturated and a good amount of monounsaturated fatty acids (Tables 1, 2).

| Table 1. Fatty acid profile of the Scenedesmus dimorphus |                 |                        |                 |                 |           | Table 2. Fatty acid profile of the Neochloris oleoabundans |           |                 |           |                 |           |
|----------------------------------------------------------|-----------------|------------------------|-----------------|-----------------|-----------|------------------------------------------------------------|-----------|-----------------|-----------|-----------------|-----------|
| Acid                                                     | Content %       | Acid                   | Content %       | Acid            | Content % | Acid                                                       | Content % | Acid            | Content % | Acid            | Content % |
| Palmitic                                                 | 11,203          | Palmitic               | 10,906          | Palmitic        | 9,151     | Palmitic                                                   | 9,077     | Palmitic        | 11,592    | Palmitic        | 9,359     |
| Stearic                                                  | 4.7             | Stearic                | 4.808           | Stearic         | 3.8424    |                                                            |           | Palmitoleico    | 0,139     |                 |           |
| Oleic                                                    | 22,586          | Oleic                  | 23 132          | Oleic           | 35,406    | Stearic                                                    | 3,774     | Stearic         | 4,462     | Stearic         | 3,817     |
| Linoleum                                                 | 50 623          | Linoleum               | 40.064          | Linoleico       | 40 566    | Oleic                                                      | 33,579    | Oleic           | 23,407    | Oleic           | 34,436    |
| Linolonic                                                | 50,025<br>C 101 | Linolonic              | 40,004<br>6 792 |                 | 40,500    | Linoleum                                                   | 41,502    | Linoleum        | 49,025    | Linoleum        | 40,566    |
| LINOIENIC                                                | 0,404           |                        | 0.762           |                 | 0.475     | Linolenic                                                  | 6,735     | Linolenic       | 6,709     | Linolenic       | 6,544     |
|                                                          |                 | Arachidico             | 0,356           | Arachidico      | 0,475     | Arachidico                                                 | 0,418     | Arachidico      | 0,32      | Arachidico      | 0,459     |
| Behenico                                                 | 0,335           | Behenico               | 0,493           | Behenico        | 0,445     | Behenico                                                   | 0,382     | Behenico        | 0,417     | Behenico        | 0,417     |
| Total                                                    | 95,931          | Total                  | 86,541          | Total           | 89,8854   | Total                                                      | 95.467    | Total           | 96.071    | Total           | 95.598    |
| Saturated                                                | 16,238          | Saturated              | 16,563          | Saturated       | 13,9134   | Saturated                                                  | 13.651    | Saturated       | 16,791    | Saturated       | 14.052    |
| Monounsaturated                                          | 22,586          | Monounsaturate         | d 23,132        | Monounsaturated | 35,406    | Monounsaturated                                            | 33.579    | Monounsaturated | 23.546    | Monounsaturated | 34.436    |
| Polyunsaturated                                          | 57,107          | Polyunsaturated 46,846 |                 | Polyunsaturated | 40,566    | Polyunsaturated                                            | 48,237    | Polyunsaturated | 55,734    | Polyunsaturated | 47,11     |

| Table 1. Fatty acid profile of the Scenedesmus dimorphus |           |                        |           |                 |           | Table 2. Fatty acid profile of the Neochloris oleoabundans |           |                 |           |                 |           |
|----------------------------------------------------------|-----------|------------------------|-----------|-----------------|-----------|------------------------------------------------------------|-----------|-----------------|-----------|-----------------|-----------|
| Acid                                                     | Content % | Acid                   | Content % | Acid            | Content % | Acid                                                       | Content % | Acid            | Content % | Acid            | Content % |
| Palmitic                                                 | 11,203    | Palmitic               | 10,906    | Palmitic        | 9,151     | Palmitic                                                   | 9,077     | Palmitic        | 11,592    | Palmitic        | 9,359     |
| Stearic                                                  | 4,7       | Stearic                | 4,808     | Stearic         | 3,8424    |                                                            |           | Palmitoleico    | 0,139     |                 |           |
| Oleic                                                    | 22.586    | Oleic                  | 23.132    | Oleic           | 35.406    | Stearic                                                    | 3,774     | Stearic         | 4,462     | Stearic         | 3,817     |
| Linoleum                                                 | 50 623    | Linoleum               | 40.064    | Linoleico       | 40 566    | Oleic                                                      | 33,579    | Oleic           | 23,407    | Oleic           | 34,436    |
| Linolenic                                                | 6 / 8/    | Linolenic              | 6 782     |                 | 10,000    | Linoleum                                                   | 41,502    | Linoleum        | 49,025    | Linoleum        | 40,566    |
| Emolerne                                                 | 0,404     | Arachidico             | 0.762     | Arachidico      | 0.475     | Linolenic                                                  | 6,735     | Linolenic       | 6,709     | Linolenic       | 6,544     |
| Dahaniaa                                                 | 0.225     | Araciliuico            | 0,330     | Alachiuico      | 0,475     | Arachidico                                                 | 0,418     | Arachidico      | 0,32      | Arachidico      | 0,459     |
| Benenico                                                 | 0,335     | Benenico               | 0,493     | Benenico        | 0,445     | Behenico                                                   | 0,382     | Behenico        | 0,417     | Behenico        | 0,417     |
| Total                                                    | 95,931    | L Total 86,541         |           | Total           | 89,8854   | Total                                                      | 95,467    | Total           | 96,071    | Total           | 95,598    |
| Saturated                                                | 16,238    | Saturated              | 16,563    | Saturated       | 13,9134   | Saturated                                                  | 13.651    | Saturated       | 16.791    | Saturated       | 14.052    |
| Monounsaturated                                          | 22,586    | Monounsaturated        | 23,132    | Monounsaturated | 35,406    | Monounsaturated                                            | 33,579    | Monounsaturated | 23.546    | Monounsaturated | 34,436    |
| Polyunsaturated                                          | 57,107    | Polyunsaturated 46,846 |           | Polyunsaturated | 40,566    | Polyunsaturated                                            | 48,237    | Polyunsaturated | 55,734    | Polyunsaturated | 47,11     |



| -           | N. | 10 |   |   |  |
|-------------|----|----|---|---|--|
|             |    |    |   |   |  |
|             |    |    | 1 |   |  |
| -           | -  |    |   |   |  |
| <b>3</b> 35 | 22 |    |   | ŧ |  |
|             |    |    |   |   |  |

| Table 3. Oil and biodiesel production yields of the two microalgae in the different culture r | nedia |
|-----------------------------------------------------------------------------------------------|-------|
|-----------------------------------------------------------------------------------------------|-------|

| Microalgae      | Culture<br>media | Weight of<br>biomass | Oil<br>performance | % Oil performance | Performance of<br>biodiesel (g) | % Performance<br>of biodiesel | - Come |
|-----------------|------------------|----------------------|--------------------|-------------------|---------------------------------|-------------------------------|--------|
| S. dimorphus    | Bayfoland forte  | 12,4                 | 3,3                | 26,5              | 1,9                             | 15,7                          |        |
| S. dimorphus    | Lamb waste       | 10,4                 | 2,9                | 27,8              | 1,2                             | 12,,4                         | P      |
| S. dimorphus    | Rabbit waste     | 18,4                 | 4,7                | 25,7              | 1,8                             | 9,8                           |        |
| N. oleoabundans | Bayfoland forte  | 14,7                 | 5,2                | 37,8              | 2,9                             | 20                            |        |
| N. oleoabundans | Lamb waste       | 22,5                 | 8,5                | 37,9              | 5,6                             | 25,1                          |        |
| N. oleoabundans | Rabbit waste     | 9,6                  | 4,5                | 47                | 3,5                             | 36,4                          |        |



 
 Table 4. Combustion Entalpy. Comparison between
petrodiesel and biodiesel resulting from this investigation

| Microalgae   | Culture media                  | Calorific Index KJ/g | <b>Comparison with</b> |  |  |
|--------------|--------------------------------|----------------------|------------------------|--|--|
|              |                                |                      | diesel %               |  |  |
| S. dimorphus | Bayfoland forte                | 38,97                | 93,05                  |  |  |
| S. dimorphus | Lamb waste                     | 38,09                | 90,95                  |  |  |
| S. dimorphus | Rabbit waste                   | 38,37                | 91,62                  |  |  |
|              | $\mathbf{D} = (1, 1, 1, 0, 1)$ | 2(70)                | 07.05                  |  |  |

**Conclusions:** The results of the combustion enthalpy between petrodiesel and biodiesel resulting from this research are promising, and comparing the results in oil and biodiesel performances that we obtained in this work makes us think about microalgae as an ecologically sustainable feedstock. The culture media used turned out to be efficient for the production of algal biomass, so we plan to continue working with these effluents now



